Determination of Potential Agricultural Conservation Savings (Low End of Range) **Central Coast**

Input	Data	from	DWR	
		Appli	ad Wata	

48 (1,000 af) Depletion 39 (1,000 af) ET of Applied Water 38 (1,000 af)

Assumptions for Calculations

6% 1. Ave. Leaching Fraction = 2. % lost to Channel Evap/ET 3 = 4%

3. Assumed allocation of conservation betw District and On-farm district portion = 1/3 of savings * "adjustment factor"

> canal lining: tailwater: flexibility: meas/price:

(adjustment factor based on region variation in water districts)

1 (points for this region's districts

0.25 = adjustment factor

8% = district portion

92% = on-farm portion

of 4 points for average)

Calculations from Input Data

(1,000 af)

Total Existing Losses

10 (Diff betw. Applied Water and ETAW) 1 (Diff betw. Depletion and ETAW)

Total Irrecoverable losses Total Recoverable losses

9 (Diff betw. Applied Water and Depletion)

Ratio of Irrecoverable Loss

Portion lost to leaching

10% (Irrecov divided by total existing losses) 0.23 (Leach Fraction * ETAW * Irrec. Loss Ratio * Adj. Factor)

Portion lost to Channel Evap/ET

1.92 (Applied Water * % lost to Channel Evap/ET)

Total Loss Conservation Potential

8 (Total Existing loss - portion to leaching - portion to channel evap/ET)

Irrecoverable Portion Recoverable Portion 0.00 (Irrec loss - portion to leaching - portion lost to channel evap/ET)

8 (Total Existing loss - Irrecoverable Loss Portion)

Incremental Distribution of Conservable Portion of Losses

_		Distrib. Factor	Applied Water Reduction ¹ (1,000 ac-ft)	Irrec. Loss Reduction ² (1,000 ac-ft)	Rec. Loss Reduction (1,000 ac-ft)
No Action Increment =	1st 40%	0.40	3	0	3
CALFED Increment =	next 30%	0.30	2	0	2
Remaining =	final 30%	0.30	2	0	2
	•		. 8	. 0	8

Summary of Savings:

Existing Applied Water Use =

48

Total Potential Reduction of Application

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		3	2	5
District		0	0	0
Total	10	3	2	5

Recovered	Losses	with	Potential fo	or Rerouting	Flows

(1,000af)	Existing	No Action	CALFED	Total
On-Farm	. 	3	2	5
District	-	0	0	0
Total	9	3	2	5

Potential for Recovering Currently Irrecoverable Losses

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		0	0	0
District		0	0	0
Total	1	0	0	0

- 1. Calculated as the distribution factor times the "conservable portion" of the total existing loss. The first 40% of savings potential occurs under No Action. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 2. Calculated as the distribution factor times the "conservable portion" of irrecoverable loss. The first 40% of savings potential occurs under No Action. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 3. Derived from comparing consumptive conveyance loss values from USBR Least-Cost CVP Yield Increase Plan, T.A #3 (Sept. 1995) to applied water values for the region. A range of 2 to 4% was used to account for uncertainty. This value accounts for consumption by bank and riparian vegetation and channel evaporation.

Determination of Potential Agricultural Conservation Savings (High End of Range) Central Coast

nput Data from DWR			Assumptions for Calculations	
Applied Water	48	(1,000 af)	1. Ave. Leaching Fraction =	4%
Depletion	39	(1,000 af)		
ET of Applied Water	38	(1,000 af)	2. % lost to Channel Evap/ET 3 =	2%
			3. Assumed allocation of conservation be district portion = 1/3 of savings * "adju	
			canal lining: tailwater:	0 (a diverse out forter
			iaiwaier: flexibility: meas/price:	0 (adjustment factor 0 based on region variation 1 in water districts)
alculations from Input Data				1 (points for this region's districts
Total Existing Lo	sses	(1,000 af) 10	(Diff betw. Applied Water and ETAW)	of 4 points for average) 0.25 = adjustment factor
Total Irrecoverable lo	sses	1	(Diff betw. Depletion and ETAW)	8% = district portion
Total Recoverable lo	sses	9	(Diff betw. Applied Water and Depletion)	92% = on-farm portion
Ratio of Irrecoverable I	oss	10%	(Irrecov divided by total existing losses)	
Portion lost to leach	ning	0.15	(Leach Fraction * ETAW * Irrec. Loss Ratio * Adj. Factor)	
Portion lost to Channel Evap	/ET	0.96	(Applied Water * % lost to Channel Evap/ET)	
Total Loss Conservation Poter	ntial	9	(Total Existing loss - portion to leaching - portion to chann	el evap/ET)
Irrecoverable Por	tion	0.00	(Irrec loss - portion to leaching - portion lost to channel eva	p/ET)
Recoverable Por	tion	9	(Total Existing loss - Irrecoverable Loss Portion)	

Incremental Distribution of Conservable Portion of Losses

_		Distrib. Factor	Applied Water Reduction ¹ (1,000 ac-ft)	Irrec. Loss Reduction ² (1,000 ac-ft)	Rec. Loss Reduction (1,000 ac-ft)
No Action Increment =	1st 40%	0.40	4	0	4
CALFED Increment =	next 30%	0.30	3	0	3
Remaining =	final 30%	0.30	3	0	3
			9	0	9

Summary of Savings:

Existing Applied Water Use =

48

Total Potential Reduction of Application

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		3	2	5
District	ŧ	0	0	0
Total	10	4	3	6

Recovered L	osses with Pote	ential for Ker	outing Flows
(1.000.0	1	1 8 4	Lauren 1

(1,000af)	Existing	No Action	CALFED	Total
On-Farm	_	3	2	5
District		0	0	0
Total	0	1	3	6

Potential for Recovering Currently Irrecoverable Losses

(1,000af)	Existing	No Action	CALFED	Total
On-Farm		0	0	0
District		0	0	0
Total	1	0	0	0

Notes:

- 1. Calculated as the distribution factor times the "conservable portion" of the total existing loss. The first 40% of savings potential occurs under *No Action*. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 2. Calculated as the distribution factor times the "conservable portion" of irrecoverable loss. The first 40% of savings potential occurs under No Action. The next 30% of saving potential is the CALFED increment. The final 30% is considered "non-conservable".
- 3. Derived from comparing consumptive conveyance loss values from USBR Least-Cost CVP Yield Increase Plan, T.A #3 (Sept. 1995) to applied water values for the region. A range of 2 to 4% was used to account for uncertainty. This value accounts for consumption by bank and riparian vegetation and channel evaporation.